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Abstract 43 

Children with and without dyslexia differ in their behavioural responses to visual information, 44 

particularly when required to pool dynamic signals over space and time. Importantly, multiple 45 

processes contribute to behavioural responses. Here we investigated which processing 46 

stages are affected in children with dyslexia when performing visual motion processing 47 

tasks, by combining two methods that are sensitive to the dynamic processes leading to 48 

responses. We used a diffusion model which decomposes response time and accuracy into 49 

distinct cognitive constructs, and high-density EEG. 50 children with dyslexia (24 male) and 50 

50 typically developing children (28 male) aged 6 to 14 years judged the direction of motion 51 

as quickly and accurately as possible in two global motion tasks (motion coherence and 52 

direction integration), which varied in their requirements for noise exclusion. Following our 53 

pre-registered analyses, we fitted hierarchical Bayesian diffusion models to the data, blinded 54 

to group membership. Unblinding revealed reduced evidence accumulation in children with 55 

dyslexia compared to typical children for both tasks. Additionally, we identified a response-56 

locked EEG component which was maximal over centro-parietal electrodes which indicated 57 

a neural correlate of reduced drift-rate in dyslexia in the motion coherence task, thereby 58 

linking brain and behaviour. We suggest that children with dyslexia tend to be slower to 59 

extract sensory evidence from global motion displays, regardless of whether noise exclusion 60 

is required, thus furthering our understanding of atypical perceptual decision-making 61 

processes in dyslexia.  62 

 63 

Significance statement  64 

Reduced sensitivity to visual information has been reported in dyslexia, with a lively debate 65 
about whether these differences causally contribute to reading difficulties. In this large pre-66 
registered study with a blind modelling approach, we combine state-of-the art methods in 67 
both computational modelling and EEG analysis to pinpoint the stages of processing that are 68 
atypical in children with dyslexia in two visual motion tasks that vary in their requirement for 69 
noise exclusion. We find reduced evidence accumulation in children with dyslexia across 70 
both tasks, and identify a neural marker, allowing us to link brain and behaviour. We show 71 
that children with dyslexia exhibit general difficulties with extracting sensory evidence from 72 
global motion displays, not just in tasks that require noise exclusion. 73 

 74 



2 
 

 2 

Introduction  75 

It has long been suspected that visual processing relates to the reading difficulties 76 

characterising developmental dyslexia (e.g., Hinshelwood, 1896; Lovegrove et al., 1980). 77 

One visual function that develops atypically in those with dyslexia is visual motion 78 

processing: an important ability contributing to scene segmentation, depth perception and 79 

object recognition (Braddick et al., 2003). Difficulties in global motion tasks requiring 80 

integration over space and time have been widely reported in dyslexia (Benassi et al., 2010). 81 

Typically, participants are required to detect or discriminate coherently moving signal dots 82 

amongst randomly moving noise dots (Newsome & Paré, 1988). In this ‘motion coherence’ 83 

task, dyslexic individuals tend to have elevated psychophysical thresholds, requiring higher 84 

proportions of signal dots to perform at the same level of accuracy as those without dyslexia 85 

(Benassi et al. 2010). The nature of the relationship is still being debated, with some 86 

researchers proposing a causal relationship between motion sensitivity and reading ability 87 

(Boets et al., 2011; Gori et al., 2016; but see Goswami, 2015; Joo et al., 2017; Olulade et al., 88 

2013; Piotrowska & Willis, 2019). 89 

Atypical global motion processing in dyslexia may reflect reduced sensitivity to rapid 90 

temporal information originating from deficiencies in the magnocellular system (Livingstone 91 

et al., 1991; Stein, 2001, 2019; Stein & Walsh, 1997) or related dorsal stream (Braddick et 92 

al., 2003; Hansen et al., 2001), which are particularly specialised for motion perception 93 

(Livingstone & Hubel, 1988). Alternative accounts suggest that dyslexic individuals have 94 

difficulty filtering out the randomly moving noise dots in motion coherence tasks (“noise 95 

exclusion”; Conlon et al., 2012; Sperling et al., 2006) or difficulties integrating over space 96 

and time (Benassi et al., 2010; Hill & Raymond, 2002; Raymond & Sorensen, 1998). 97 

Despite focusing on the sensory parameters of visual motion stimuli, these accounts 98 

give little consideration to the dynamic processes leading to atypical behavioural responses 99 

in dyslexia, and particularly, whether decision-making processes are affected. Here we 100 

explicitly modelled the decision-making process using a popular cognitive model of accuracy 101 

and response time: the diffusion model (Evans & Wagenmakers, 2020; Ratcliff, 1978; Stone, 102 
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1960). The decision is modelled as a noisy evidence accumulation process from a starting 103 

point towards one of two decision bounds (Figure 1). This modelling approach will help 104 

identify the locus of atypical processing in dyslexia, with two further advantages. First, the 105 

resulting parameters may be more sensitive to group differences than accuracy or response 106 

time alone (Stafford et al., 2020) and second, the parameters relate well to neural measures 107 

(Kelly & O’Connell, 2013; Manning et al., 2021a; Turner et al., 2015). Accordingly, we 108 

combined the diffusion model with a neural measure sensitive to the dynamic processes 109 

contributing to behavioural responses (EEG), bridging brain and behaviour.  110 

 111 

[insert Figure 1 about here] 112 

 113 

The diffusion model was recently applied to motion coherence performance in 114 

children with varying reading abilities (O’Brien and Yeatman, 2020). Poorer reading was 115 

related to lower drift-rates, wider decision bounds, and more intra-individual variability in 116 

starting point and non-decision time. Therefore poor readers accumulated motion evidence 117 

more slowly and responded more cautiously than good readers. 118 

Here, we used diffusion models to identify the processing stages affected in children 119 

with dyslexia across two global motion tasks. The first task was a standard motion 120 

coherence task (cf. O’Brien & Yeatman, 2020). The second task was a direction integration 121 

task not used before with dyslexic individuals, whereby dot directions are sampled from a 122 

Gaussian distribution, with difficulty manipulated via the standard deviation of the 123 

distribution. In this task, the optimal strategy is to average over all dots, with no noise 124 

exclusion requirement. The reason for presenting both tasks to children with dyslexia was to 125 

determine whether differences in model parameters are found for both motion tasks, 126 

suggesting a general motion-processing deficit (cf. magnocellular/dorsal deficit; Braddick et 127 

al., 2003; Stein, 2001), or whether differences in model parameters are found particularly for 128 

the motion coherence task, reflecting noise exclusion difficulties (Conlon et al., 2012; 129 

Sperling et al., 2006).  130 



4 
 

 4 

Methods 131 

 132 

Pre-registration 133 

 We pre-registered our inclusion criteria and analysis plan before completing data 134 

collection and before commencing analyses (https://osf.io/enkwm). When analysing the data 135 

we used a blind modelling approach to ensure that modelling decisions were not biased by 136 

our hypotheses. Our pre-registered primary research questions and hypotheses were:  137 

1. Do children with dyslexia have reduced drift-rates in a motion coherence task 138 

compared to typically developing children? We hypothesised that children with dyslexia 139 

would have reduced drift-rates in the motion coherence task compared to typically 140 

developing children, in line with the results of O’Brien and Yeatman (2020) and reports of 141 

reduced motion coherence sensitivity in dyslexic individuals (Benassi et al., 2010).  142 

2. Do children with dyslexia have reduced drift-rates in a direction integration task 143 

compared to typically developing children? If children with dyslexia show difficulties with all 144 

global motion tasks (in line with impaired magnocellular/dorsal stream functioning; Braddick 145 

et al., 2003; Stein, 2001), then we would expect children with dyslexia to have a reduced 146 

drift-rate in this task as well. Instead, if the performance of children with dyslexia in a motion 147 

coherence task is limited solely by difficulties with noise exclusion (Conlon et al., 2012; 148 

Sperling et al., 2006), we would expect to see no difference between children with and 149 

without dyslexia in this task, as it does not require segregating signal dots from randomly 150 

moving noise dots.  151 

3. Do children with dyslexia show increased boundary separation? We hypothesised 152 

that children with dyslexia would have wider boundary separation compared to typically 153 

developing children in both tasks, following O’Brien and Yeatman (2020).  154 

4. Do children with dyslexia show increased non-decision time? We hypothesised no 155 

group differences in overall non-decision time in either task, following O’Brien and Yeatman 156 

(2020). 157 

 158 
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Participants 159 

We collected data from 50 children with dyslexia and 60 typically developing children 160 

who met our inclusion criteria. Specifically, participants were required to be aged 6 to 14 161 

years (inclusive), have verbal and/or performance IQ scores above 70 (measured using the 162 

Wechsler Abbreviated Scales of Intelligence, 2nd edition [WASI-2]; Wechsler, 2011) and to 163 

have normal or corrected-to-normal acuity, as measured using a Snellen acuity chart (with 164 

binocular acuities of 6/9 or better for children aged 6 to 8 years and 6/6 or better for children 165 

aged 9 to 14 years). Children in the dyslexia group were required to have a dyslexia 166 

diagnosis (or be in the process of obtaining one, n = 1), and to have a reading and spelling 167 

composite score of 89 or below, which was computed by averaging the standard scores for 168 

the spelling subtest of the Wechsler Individual Achievement Test (WIAT-III; Wechsler, 2017) 169 

and the Phonological Decoding Efficiency subtest of the Test of Word Reading Efficiency 170 

(TOWRE-2; Torgesen et al., 2012). A cut-off of 89 was chosen to correspond to 1.5 standard 171 

deviations below the mean of typically developing children in a similar study (Snowling et al., 172 

2019a, 2019b). Children in the typically developing group were required to have composite 173 

scores above 89 and to have no diagnosed developmental conditions. Datasets from an 174 

additional 4 typically developing children were excluded due to poor visual acuity (n = 1), 175 

having a composite score of 89 or below (n = 2), or failing to pass criterion on the task (n = 176 

1), and datasets from an additional 11 children with dyslexia were excluded due to poor 177 

visual acuity (n = 2) or having a composite score above 89 (n = 9). 178 

We then selected 50 typically developing children to best match the children with 179 

dyslexia in terms of age and performance IQ using the R MatchIt package (Ho et al., 2011), 180 

so that the final dataset included 50 children with dyslexia (24 male) and 50 typically 181 

developing children (28 male). As shown in Table 1, the children with dyslexia had slightly 182 

higher ages and lower IQ values on average than the typically developing children. EEG 183 

data were collected during task performance in 47 typically developing and 44 children with 184 

dyslexia (although EEG data were available only in the motion coherence task for one child 185 

with dyslexia). The EEG data from these participants were included in a paper investigating 186 
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responses locked to the onset of coherent motion in typically developing children and 187 

children with autism or dyslexia (Toffoli et al., 2021), and the larger group of 60 typically 188 

developing children were used to form the comparison group in an autism study (Manning et 189 

al., 2021b). 190 

[insert Table 1 about here] 191 

 192 

Apparatus 193 

The tasks were presented on a Dell Precision M3800 laptop (2048 x 1152 pixels, 60 194 

Hz) using the Psychophysics Toolbox for MATLAB (Brainard, 1997; Kleiner, Brainard & Pelli, 195 

2007; Pelli, 1997). EEG signals were collected using 128-channel Hydrocel Geodesic 196 

Sensor Nets connected to Net Amps 300 (Electrical Geodesics Inc., OR, USA) and 197 

NetStation 4.5 software. A photodiode attached to the monitor independently verified 198 

stimulus presentation timing. Participants used a Cedrus RB-540 response box (Cedrus, CA, 199 

USA). 200 

 201 

[insert Figure 2 about here] 202 

 203 

Stimuli 204 

 Stimuli were 100 white, randomly positioned dots (diameter 0.19˚) moving at 6˚/s 205 

within a square aperture (10˚ x 10˚) on a black background, with a limited lifetime of 400 ms. 206 

Each trial had a fixation period, a random motion period, a stimulus period, and an offset 207 

period, with a red fixation square (0.24˚ x 0.24˚) presented throughout (see Figure 2). By 208 

presenting random (incoherent) motion before the stimulus period, we could dissociate 209 

evoked responses to directional motion from pattern- and motion-onset evoked potentials. 210 

The start of the stimulus period was highlighted to participants with an auditory tone. In the 211 

motion coherence task, directional motion (leftward or rightward) was introduced in a 212 

proportion of ‘signal’ dots, while the remainder of the dots continued to move in random 213 

directions. In the direction integration task, the directions of dots in the stimulus phase were 214 



7 
 

 7 

distributed according to a Gaussian distribution with a mean leftward or rightward direction. 215 

The fixation period, random motion period and offset period had jittered durations within a 216 

fixed range, while the stimulus period was presented until a response or 2500 ms had 217 

elapsed. The offset period continued the directional motion to temporally separate motion 218 

offset from the response. 219 

 220 

Experimental task procedure 221 

 Children completed motion coherence and direction integration tasks within child-222 

friendly games (based on Manning et al., 2019, 2021a). Using animations, participants were 223 

told that fireflies were escaping from their viewing boxes, and they were asked to tell the 224 

zookeeper which way the fireflies were escaping. There were 10 ‘levels’ of the game. Levels 225 

1-5 corresponded to one task (either motion coherence or direction integration), and Levels 226 

6-10 corresponded to the other task, with the order of tasks being counterbalanced across 227 

participants. Levels 1 and 6 were practice phases, and the remaining 4 levels for each task 228 

were experimental blocks. In the motion coherence task, difficulty was manipulated by 229 

varying the proportion of coherently moving dots, and in the direction integration task, 230 

difficulty was manipulated by varying the standard deviation of the Gaussian distribution from 231 

which the dot directions were sampled. 232 

 In the practice phases, four demonstration trials were presented with no random 233 

motion phase and an unlimited stimulus phase, so that the experimenter could explain the 234 

task. Participants reported stimulus direction using a response box. The first two 235 

demonstration trials were ‘easy’ (100% coherence or 1˚ standard deviation), and the last two 236 

were more difficult (75% and 50% coherence, or 10˚ and 25˚ standard deviations). Following 237 

the demonstration trials, there were up to 20 criterion trials with a coherence of 95% or a 238 

standard deviation of 5˚. These trials introduced the random motion phase. Participants were 239 

told that the fireflies would be going “all over the place” at first, and that they must wait for an 240 

alarm (auditory beep) before deciding which way the fireflies were escaping. A time limit was 241 

enforced, with visual feedback presented on the screen if participants did not respond within 242 
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2500 ms (“Timeout! Try to be quicker next time!”). Feedback on accuracy was given for 243 

responses made within the time limit (“That was correct!”, or “It was the other way that 244 

time”). When participants met a criterion of four consecutive correct responses, no more 245 

criterion trials were presented. Next, there were eight practice trials of increasing difficulty 246 

(motion coherence task: 80%, 70%, 60%, 50%, 40%, 30%, 20%, 10%; direction integration 247 

task: 5˚, 10˚, 15˚, 20˚, 30˚, 40˚, 50˚, 60˚) with feedback as before. Level 1 was repeated for 248 

one typically developing child and 2 children with dyslexia who did not meet the criterion of 249 

four consecutive correct responses on the first attempt, but passed on the second attempt. 250 

Levels 2-5 and 7-10 each contained 38 trials, with 9 repetitions of each of two 251 

difficulty levels (motion coherence task: 30%, 75%; direction integration task: 70˚, 30˚ SD), 252 

for each motion direction (leftward, rightward), and an additional 2 catch trials presenting 253 

100% coherent (0˚ SD) motion. The experimental phase for each task therefore consisted of 254 

152 trials. No trial-by-trial feedback was presented during the experimental phase, apart 255 

from a ‘timeout’ message if no response was made within 2500ms after stimulus onset. At 256 

the end of each level, participants were given points for their speed and accuracy in the 257 

preceding block (computed by (1 / median response time) * the number of correct responses 258 

* 2, rounded to the nearest integer). If participants obtained a score under 10, a score of 10 259 

points was given to maintain motivation. Trials were presented automatically, although the 260 

experimenter could pause and resume trial presentation if necessary. The experimental 261 

code can be found here: https://osf.io/fkjt6/. 262 

 263 

General procedure 264 

The procedure was approved by the Central University Research Ethics Committee 265 

at the University of Oxford. Parents provided written informed consent and children gave 266 

verbal or written assent. All children took part at the University of Oxford apart from one child 267 

with dyslexia who was seen at school without EEG. During the experimental tasks, 268 

participants sat 80cm away from the computer screen in a dimly lit room. For children who 269 

participated with EEG, we fitted the net prior to the experiment and ensured that electrode 270 
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impedances were below 50 kΩ. EEG data were acquired at a sampling rate of 500Hz with a 271 

vertex reference electrode.  272 

Children were closely monitored by an experimenter sitting beside them. The 273 

experimenter provided general encouragement and task reminders, pausing before the start 274 

of a trial if needed (e.g., to remind the child to keep still). Children had short breaks at the 275 

end of each ‘level’ and a longer break at the end of the first task (at the end of ‘level 5’). 276 

During the longer break, electrode impedances were re-assessed for children wearing EEG 277 

nets. Children marked their progress through the levels using a stamper on a record card. 278 

The children also completed a Snellen acuity test, the WASI-2, the TOWRE-2 and the 279 

spelling subtest of the WIAT-III. The whole session took no longer than 2 hours and children 280 

were given a gift voucher to thank them for their time. 281 

 282 

Diffusion model analysis 283 

 Initially, a blinded analysis was conducted to ensure that modelling decisions were 284 

made without being biased by the hypotheses under test. The first author (CM) prepared a 285 

blinded dataset in which group membership was randomly permuted (see also Dutilh et al., 286 

2017) and one of the authors (NJE) ran diffusion model analysis on this blinded dataset.  287 

 Prior to modelling, trials with response times under 200 ms were removed 288 

(corresponding to 0.20% of trials in the typical group and 0.24% of trials in the dyslexia 289 

group). Trials without a response (i.e., no response made within the 2500ms deadline) were 290 

modelled as non-terminating accumulation trajectories, with the probability of a non-291 

response occurring being the survivor function for the model at the time of the 2500 ms 292 

deadline (Evans et al., 2018; Howard et al., 2020; Ulrich & Miller, 1994). These trials 293 

accounted for 1.02% of the data in the typical group and 1.26% of the data in the dyslexia 294 

group. We fit the data from each task with hierarchical, Bayesian diffusion models with 5 295 

parameters: 1) average drift-rate across difficulty levels v.mean, 2) boundary separation a, 3) 296 

non-decision time ter, 4) difference in mean drift-rate between difficulty levels v.diff, and 5) 297 

starting point z. The stochastic noise within the model (s) was fixed at 0.1 to solve a scaling 298 
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problem within the model, as per convention (Ratcliff, 1978). There were 3 hyperparameters 299 

for each parameter reflecting the mean (μ) and standard deviation (σ) across the two groups 300 

and the difference between groups (δ). Importantly, this parameterization allowed us to 301 

explicitly set priors on the differences between groups, which was the key effect of interest 302 

within the current study. More specifically, the priors were:  303 

Data level: 304 

 

Parameters: 305 

 

 

 

 

 

 

Hyperparameters: 306 

 

 

 

 

 

 

 

 307 

where y reflects the data, and subscripts p and i reflect the participant and difficulty 308 

level respectively. The priors for the μ and σ parameters were based on those used in 309 

previous studies implementing hierarchical diffusion models (e.g., Evans & Brown, 2017; 310 
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Evans & Hawkins, 2019; Evans et al., 2019), and the priors for the δ parameters were based 311 

on the “moderately informative priors” used for the differences between conditions in Evans 312 

(2019). We used a differential evolution Markov chain Monte Carlo algorithm (DE-MCMC; 313 

Ter Braak, 2006; Turner, Sederberg, Brown, & Steyvers, 2013) to sample from the posterior 314 

with 15 interacting chains, each with 4000 iterations, the first 1500 of which were discarded 315 

as burn-in. We also implemented a migration algorithm (see Turner, Sederberg, Brown, & 316 

Steyvers, 2013), where chains were randomly migrated every 14 iterations between 317 

iterations 500 and 1100. We calculated Bayes factors through the Savage-Dickey ratio. 318 

Where we found evidence of group differences, we established the population effect size by 319 

dividing the posterior of the group difference (δ) by the posterior of the population standard 320 

deviation (σ).  321 

As shown in Table 1, the children with dyslexia were on average slightly older and of 322 

lower IQ than the typically developing children. As pre-registered, the first author (CM) ran a 323 

default Bayesian t-test using the BayesFactor R package (Morey & Rouder, 2018) which 324 

revealed weak, inconclusive evidence for the absence of group differences in age (BF in 325 

support of group differences = 0.33; Jeffreys, 1961). As we know that diffusion model 326 

parameters change with age (Manning et al., 2021a), and as we couldn’t conclusively rule 327 

out group differences in age, we also ran models which partialled out the effects of age from 328 

all of the parameters (using the residuals from the line of best fit between age and each of 329 

the parameters), in addition to our standard models. In our pre-registered analysis plan we 330 

decided not to control for performance IQ as it may relate to both group membership and 331 

decision-making in cognitively relevant ways (Dennis et al., 2009). The analysis files were 332 

posted on the Open Science Framework prior to unblinding (https://osf.io/nvwf7/), at which 333 

point all models were re-run on the unblinded dataset with correct group membership. 334 

 335 

EEG analysis for joint modelling 336 

We ran exploratory analysis on the unblinded dataset to investigate links between 337 

drift-rate and EEG activity. EEG data were band-pass filtered between 0.3 and 40 Hz in 338 
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NetStation and then exported for further processing in MATLAB using EEGLAB functions 339 

(Delorme & Makeig, 2004). We downsampled each participant’s data to 250 Hz and selected 340 

only the data between the first fixation onset and the last offset period. We then bandpass-341 

filtered between 0.3 and 40 Hz (due to insufficient attenuation of low frequencies by 342 

NetStation filters, Manning et al., 2019) and used EEGLAB’s ‘clean_artifacts’ function to 343 

remove bad channels, identify data segments with standard deviations over 15 and correct 344 

them using artifact subspace reconstruction (ASR; Chang et al., 2018). Missing channels 345 

were then interpolated. We then ran independent components analysis on 3000 ms epochs 346 

starting at fixation onset using an Infomax algorithm and subtracted ocular components from 347 

the continuous data. Finally, we average re-referenced the data. In line with the behavioural 348 

analyses, we excluded triggers for response events made <200 ms or >2500 ms after 349 

stimulus onset. 350 

Following previous work, we used a data-driven component decomposition technique 351 

to identify spatiotemporally reliable patterns of activity across trials, which has the effect of 352 

maximising signal-to-noise ratio (Reliable Components Analysis, Dmochowski et al., 2012; 353 

Dmochowski & Norcia, 2015; Manning et al., 2019, 2021a). To do this, we epoched each 354 

participant’s preprocessed continuous data from -600 ms to 200 ms around each response, 355 

and we baselined the data to the last 100 ms of the random motion period. We submitted the 356 

baselined epochs for participants in both groups to Reliable Components analysis for each 357 

task separately. The forward-model projections of the weights for the most reliable 358 

component for each task (which explained 28.7% and 27.1% of the reliability in the motion 359 

coherence and direction integration tasks, respectively) are shown in Figure 3. This 360 

component resembled the most reliable component found in our previous work (Manning et 361 

al., 2021a), which in turn resembles the centro-parietal positivity (O’Connell et al., 2012; 362 

Kelly and O’Connell, 2013). Build-up of activity in this component has been linked to drift-363 

rate in typically developing children (Manning et al., 2021a). To investigate links with drift-364 

rate in the current dataset, we projected each participant’s continuous data through the 365 
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spatial weights for this component to yield a single component waveform for each participant 366 

for each task. 367 

[insert Figure 3 about here] 368 

 369 

  In our paradigm, stimulus-locked and response-locked activity overlap temporally, 370 

with the degree of overlap relating to the participant’s reaction time. Importantly, the extent of 371 

overlap could vary between groups and/or conditions (Ehinger & Dimigen, 2019). Thus, in 372 

order to obtain an EEG measure for inclusion in our model that reflects the decision-making 373 

process as purely as possible, and fully separate the contributions of stimulus-locked and 374 

response-locked activity, we used a linear deconvolution method to unmix overlapping 375 

stimulus-locked and response-locked activity in our component waveform using the Unfold 376 

toolbox (Ehinger & Dimigen, 2019). We modelled the continuous waveform for each 377 

participant by selecting a time window of -1000 ms to 1000 ms around each stimulus event 378 

or response event. We specified a design matrix with predictors for each difficulty level 379 

(difficult, easy) for each event type (stimulus, response). We then time-expanded the design 380 

matrix by adding a predictor for each timepoint sampled (i.e., every 4 ms from -1000 ms to 381 

1000 ms) for each event type. The reason for this ‘time-expansion’ is that each regressor in 382 

the resulting design matrix models the evoked response (either stimulus-locked or response-383 

locked) at a particular point in time (Smith & Kutas, 2015; Ehinger & Dimigen, 2019); this is 384 

equivalent to the ‘finite impulse response’ approach to analysis of fMRI timeseries (Henson, 385 

Rugg and Friston, 2001). The predictors are therefore simply ‘boxcar’ functions at each point 386 

in time, rather than information relating to the stimulus display. Having constructed the 387 

design matrix, we identified segments with amplitudes above ±250 μV using a sliding 2000 388 

ms segment in 100 ms steps, and excluded these segments from the design matrix (mean 389 

2.72% of the data for each participant, range: 0 to 43%). We then fit the deconvolution model 390 

resulting in regression weights (betas) for each of the 2 event types, 2 difficulty levels and 391 

500 timepoints, which we used to construct regression waveforms (see Figures 4 and 5). 392 

Comparing the left and middle columns of Figures 4 and 5 shows that deconvolution led to 393 
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reduced amplitudes (which is expected as the non-deconvolved waveform contains a mix of 394 

overlapping stimulus-locked and response-locked activity). 395 

[insert Figures 4 & 5 about here] 396 

 397 

The non-deconvolved waveforms showed amplitude differences between difficult and 398 

easy levels (Figures 4 and 5, left column), as to be expected for an EEG measure which 399 

reflects the decision-making process. However, these differences across difficulty levels 400 

were not evident in the deconvolved waveforms (Figures 4 and 5, central column). The fact 401 

that the difference between difficulty levels changed as a result of deconvolution could 402 

suggest that the overlap between stimulus- and response-locked activity differs between 403 

difficulty levels, due to different RT distributions in each difficulty level. However, we found a 404 

difficulty level difference in the non-deconvolved waveforms even when matching the RT 405 

distributions for the easy and difficult levels, so that difficulty level differences could not be 406 

purely attributed to different RT distributions. We therefore suspected that the beta estimates 407 

may be noisy and that the deconvolution technique was overfitting the noise. Therefore, in 408 

the final step where we selected EEG measures for inclusion in the diffusion model, we re-409 

ran the deconvolution model using a regularisation method which penalises the squared 410 

magnitude of the regression coefficients (ridge regression; see Kristensen et al., 2017) to 411 

minimise noise. Using this approach retained the difficulty level differences while minimising 412 

the noise in the waveforms (see right column of Figures 4 and 5). Specifically, we found the 413 

best regularisation parameter for each participant using cross-validation, and then took the 414 

mode across all participants and constrained the regularisation parameter to ensure that 415 

differences in regularisation did not contribute to group differences in resulting waveforms. 416 

The modal parameter value was 10 for the motion coherence task (5.5 and 10 for the 417 

typically developing children and children with dyslexia, separately) and 5 for the direction 418 

integration task (5 and 4.5 for the typically developing children and children with dyslexia, 419 

separately). We then fit a regression slope to each participant’s average deconvolved 420 
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waveform for each difficulty level between -200 ms to 0 ms around the time of the response 421 

to obtain a slope measure which we entered into the diffusion model and related to drift-rate.  422 

To assess the relationship between drift-rate and the EEG component discussed 423 

above, we used a joint modelling approach (Turner et al., 2013, 2015, 2016, Evans et al., 424 

2018; Knowles et al., 2019). Specifically, we estimated additional hyper-parameters for the 425 

correlation between the v.mean parameter and the average of the EEG measure (slope of 426 

centro-parietal component activity between -200 ms to 0 ms before response) over difficulty 427 

levels (EEG.mean), and between the v.diff parameter and the difference in the EEG 428 

measure between difficulty levels (EEG.diff). Specifically, this meant that the structure of the 429 

original hierarchical model (with age partialled out) was only different for the drift-rate 430 

parameter, which was now a bivariate normal with the EEG measure: 431 

 

 

 

 

 

 

 

where ρ refers to the correlation between drift-rate and the EEG measure. Note that we 432 

again used DE-MCMC with 15 interacting chains to sample from the posterior of the joint 433 

model, though due to the greater computational burden of the model we used 3000 434 

iterations, of which the first 1000 were discarded as burn-in and no migration algorithm was 435 

implemented. Furthermore, we estimated two different variants of this joint model: one where 436 

the correlations were constrained to be the same across groups, which would allow for the 437 

estimation of more precise posteriors due to the limited sample size, and another less 438 

constrained version were the correlations were estimated separately for each group. 439 
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Data and code availability 440 

Analysis scripts and output files are available at: https://osf.io/nvwf7/. Data will be made 441 

available on the UK Data Service after the manuscript has been accepted for publication. 442 

 443 

Results 444 

[insert Figure 6 about here] 445 

 446 

Diffusion modelling of behavioural data 447 

Figure 6 summarises the accuracy and response time data subjected to diffusion 448 

modelling. This figure shows that the children with dyslexia had slightly slower median 449 

response times compared to typically developing children, on average, and were slightly less 450 

accurate in the direction integration task, particularly on the difficult trials. However, there 451 

was substantial overlap between the groups with considerable variability within each group. 452 

These behavioural data were well-fit by our diffusion models, as shown by the cumulative 453 

density functions in Figure 7. All chains were well-converged, as reflected by Gelman-Rubin 454 

diagnostic values (Gelman & Rubin, 1992) close to 1 (M = 1.00, range = 1.00 – 1.07).  455 

 456 

[insert Figure 7 about here] 457 

 458 
 459 

Figure 8 shows the prior and posterior distributions for the group-level parameters 460 

that reflect the difference between groups for each of the 5 parameters (v.mean, a, ter, v.diff, 461 

beta), along with Bayes factors. Bayes factors above 1 reflect more evidence for the 462 

alternative hypothesis of group differences compared to the null hypothesis, whereas Bayes 463 

factors below 1 reflect relatively more evidence for the null hypothesis than the alternative 464 

hypothesis. We use the heuristic that Bayes factors between 1/3 and 3 constitute only weak, 465 

inconclusive evidence (Jeffreys, 1961).  466 

 467 
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[insert Figure 8 about here] 468 

 In support of our first hypothesis, children with dyslexia had reduced drift-rates in the 469 

motion coherence task compared to typically developing children, as shown by the leftward 470 

shift in the posterior distribution of v. mean in Figure 8. When age was partialled out, there 471 

was moderate evidence in favour of group differences (BF = 4.57, population effect size M = 472 

-.18, 95% CI: [-.40, .02]). The evidence was weaker when age was not partialled out (BF = 473 

1.75). Interestingly, the same pattern was found in support of our second hypothesis, with 474 

children with dyslexia also showing reduced drift-rates in the direction integration task 475 

compared to typically developing children. Again, there was moderate evidence for group 476 

differences when age was controlled for (BF = 4.28, population effect size M = -.21, 95% CI: 477 

[-.45, .02]), but weak evidence when age was not controlled for (BF = 1.71). 478 

Our third hypothesis was that children with dyslexia would show increased boundary 479 

separation. Although children with dyslexia did have slightly higher boundary separation 480 

compared to typically developing children (indicated by a small rightward shift in the 481 

posterior distribution of a in Figure 8), particularly in the motion coherence task, the evidence 482 

remained inconclusive, even when controlling for age. Our final hypothesis was that there 483 

would be no group differences in non-decision time (ter) in either task. Figure 8 shows little 484 

difference between the groups in this parameter, but the Bayes factors are close to 1, 485 

suggesting inconclusive evidence. Therefore, more data would be required to make firm 486 

conclusions regarding these hypotheses.  487 

These pre-registered analyses did not control for performance IQ because it could be 488 

meaningfully related to both decision-making parameters and group membership, and 489 

investigating its contribution to both was beyond the scope of our multi-level modelling 490 

approach. However, as there was an indication of a relationship between performance IQ 491 

and drift-rate (Figure 9), and as both performance IQ and drift-rate differed between the 492 

groups, we investigated these links further with an exploratory analysis which partialled out 493 

the effects of both age and performance IQ (Figure 10). In brief, BFs of 2.3 and 2.38 in the 494 
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two tasks continue to provide weak evidence for group differences in mean drift-rate when 495 

both age and PIQ are controlled for.  496 

[insert Figures 9 and 10 about here] 497 

 498 

Joint modelling of EEG and behavioural data 499 

 500 

[insert Figure 11 about here] 501 

 502 

Figure 11 shows the distribution of slope measures that were extracted from each 503 

participant’s deconvolved (with regularisation) response-locked waveform, which were used 504 

in joint modelling to explore links between EEG and model parameters. While there was 505 

considerable between-participants variability, the children with dyslexia had shallower slopes 506 

than the typical children, on average. A Bayesian repeated measures ANOVA in JASP 507 

(JASP Team, 2020) showed that, in the motion coherence task, the best model of EEG 508 

slope measures included both the within-participants factor of difficulty level, the between-509 

participants factor of group and an interaction term. When averaging across models, there 510 

was strong evidence for including a main effect of group (BFincl = 14.70) and a group by 511 

difficulty level interaction (BFincl = 4.65). Yet in the direction integration task, the best model 512 

of EEG slope measures included only the within-participants factor of difficulty, with 513 

inconclusive evidence for including a main effect of group (BFincl = 0.70) or a group by 514 

difficulty level interaction (BFincl = 0.49). Therefore it seems that the build-up of activity in the 515 

centro-parietal component is clearly reduced in children with dyslexia in the motion 516 

coherence task, but the reduction is not compelling in the direction integration task. 517 

Next we established whether this EEG measure was related to drift-rate across the 518 

whole sample, estimating a single correlation for both groups, with the effects of age 519 

partialled out. For both tasks, the EEG measure was positively related to both the mean drift-520 

rate across difficulty levels, though the evidence was only weak in the case of the direction 521 

integration task (motion coherence: posterior mean r = .44, 95% credible intervals (CI) = 522 
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[.26, .6], BF = 8869.49; direction integration: posterior mean r = .25, CI = [.03, .45], BF = 523 

1.65). The posterior means were in the direction of a positive relationship between the 524 

difference in EEG measure and the difference in drift rate between difficulty levels, although 525 

the evidence was inconclusive with relatively more evidence for the null hypothesis (motion 526 

coherence: posterior mean r = .22, CI = [-.02, .44], BF = .73; direction integration: posterior 527 

mean r = .17, CI = [-.08, .4], BF = 0.43; see Figure 12 for scatterplots). 528 

 529 

[insert Figure 12 about here] 530 

 531 

Next we fit joint models in which we estimated a separate correlation coefficient 532 

between drift-rate and the EEG measure for the children with dyslexia and typical children 533 

(Figure 13). Note that our intention was not to explicitly test for differences in correlations 534 

between groups, but rather to see if the previous findings seem to hold for each group; any 535 

separation between the groups below is intended to merely describe our estimated posterior 536 

distributions. A positive correlation can be seen for both groups in the motion coherence task 537 

for the mean drift-rate across difficulty levels (typical: posterior mean r = .41, CI = [.13, .63], 538 

BF = 7.45; dyslexia: posterior mean r = .43, CI = [.15, .64], BF = 12.75). The posterior means 539 

were in the direction of a positive relationship for the difference in drift-rate between difficulty 540 

levels, but the evidence was inconclusive with relatively more evidence for the null 541 

hypothesis (typical: posterior mean r = .18, CI = [-.2, .51], BF = .39; dyslexia: posterior mean 542 

r = .20, CI = [-.12, .49], BF = .46). The strength of correlations was weaker in the direction 543 

integration task, particularly for the typical children, for whom the Bayes factors suggested 544 

moderate evidence for no relationship (mean drift-rate across difficulty levels: posterior mean 545 

r = .10, CI = [-.22, .4], BF = .29; difference between difficulty levels: posterior mean r = .04, 546 

CI = [-.31, .38], BF = .24). The strength of the correlations in children with dyslexia were 547 

slightly stronger than in the typical children, with the mean drift-rate across difficulty levels 548 

showing weak evidence for a relationship, though the difference in drift-rate between 549 

difficulty levels showed weak evidence for no relationship (mean drift-rate across difficulty 550 
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levels: posterior mean r = .34, CI = [.04, .58], BF = 2.59; difference between difficulty levels: 551 

posterior mean r = .24, CI = [-.09, .53], BF = .61). 552 

 553 

[insert Figure 13 about here] 554 

 555 

Discussion (1500 words) 556 

 We analysed the performance of children with dyslexia and typical children in two 557 

global motion tasks using diffusion modelling, to identify the processing stages that are 558 

altered in dyslexia. In both the motion coherence and direction integration tasks, children 559 

with dyslexia accumulated sensory evidence more slowly than typical children, on average, 560 

once controlling for age. Moreover, we found a neural correlate of this evidence 561 

accumulation process that was attenuated in dyslexia in the motion coherence task, thus 562 

linking brain and behavioural measures with a latent model parameter. 563 

 The finding of reduced evidence accumulation for children with dyslexia during the 564 

motion coherence task echoes O’Brien and Yeatman (2020) and helps to explain previous 565 

reports of elevated motion coherence thresholds in dyslexia (Benassi et al., 2010). 566 

Importantly, the current study goes further by showing that reduced evidence accumulation 567 

is also found in a direction integration task that does not require segregating signal dots from 568 

noise dots. This result suggests that dyslexic individuals have general difficulties with 569 

extracting global motion information, rather than solely difficulties with noise exclusion (cf. 570 

Conlon et al., 2012; Sperling et al., 2006) –in line with reports of atypical performance in an 571 

illusory motion task without noise exclusion requirements (Gori et al., 2015, 2016). These 572 

general difficulties could reflect reduced temporal and/or spatial integration of motion signals 573 

(Benassi et al., 2010; Hill & Raymond, 2002; Raymond & Sorensen, 1998). This conclusion 574 

does not negate the possibility that dyslexic individuals face additional difficulties when 575 

segregating signal from noise, as we suggested based on stimulus-locked analyses using a 576 

similar dataset (Toffoli et al., 2021).  577 
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By supplementing our diffusion modelling analysis with EEG, we identified a neural 578 

index of reduced evidence accumulation in dyslexia. Specifically, we used a data-driven 579 

component decomposition technique to find a centro-parietal component previously linked to 580 

decision-making (Kelly and O’Connell, 2013; O’Connell et al., 2012; Manning et al., 2021a), 581 

and then ‘unmixed’ overlapping stimulus- and response-locked activity. In the motion 582 

coherence task, we found that children with dyslexia showed a shallower build-up in the 583 

response-locked centro-parietal component compared to typical children, and the gradient of 584 

the build-up was positively correlated with drift-rate in the joint model. While the EEG 585 

analysis was exploratory, the results are consistent with an earlier study of typically 586 

developing children (Manning et al., 2021a) and follow our hypothesised pattern  587 

(https://osf.io/enkwm). Similarly, Stefanac et al. (2021) reported reduced centro-parietal 588 

build-up in children with dyslexia compared to chronological and reading age-matched 589 

controls. Yet, in our direction integration task, we found no compelling evidence for reduced 590 

centro-parietal build-up in children with dyslexia and the evidence for a relationship between 591 

this EEG measure and drift-rate was weaker. This suggests that the magnitude of the 592 

centro-parietal positivity and its association with drift-rate may be group- and task-593 

dependent, to some extent (see also Lui et al., 2021). 594 

 Alongside reductions in drift-rate, we hypothesised that children with dyslexia would 595 

show wider boundary separation compared to typically developing children, reflecting more 596 

cautious responses, and no differences in non-decision time. We found some evidence for 597 

increased boundary separation in children with dyslexia in the motion coherence task, but 598 

this was inconclusive. There was also inconclusive evidence for group differences in non-599 

decision time. These results are not at odds with O’Brien and Yeatman (2020), but suggest 600 

that more data are required to reach a firm conclusion regarding these parameters. 601 

Seemingly any group differences in these parameters are more subtle than group 602 

differences in drift-rate. We note that the inferential method used by O’Brien and Yeatman 603 

(2020) differed from our own: while they also fit a hierarchical Bayesian model, they then 604 

extracted point estimates of diffusion model parameters for each individual to draw statistical 605 
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inferences. Importantly, this means that O’Brien and Yeatman (2020) ignored the uncertainty 606 

in the individual-level parameters, which can inflate the evidence in favour of the winning 607 

model (Boehm et al., 2018; Evans & Wagenmakers, 2019).  608 

 Together with the results from stimulus-locked analyses using a similar dataset 609 

(Toffoli et al., 2021), our results suggest that early sensory encoding of motion information is 610 

not altered in children with dyslexia. While differences in drift-rate cannot completely tease 611 

apart sensory and decision-making processes, in the current study we found no evidence of 612 

group differences in non-decision time – a measure which includes the time taken for 613 

sensory encoding. Moreover, Toffoli et al. showed that early peaks reflecting motion-specific 614 

processing were similar in children with dyslexia and typically developing children, with 615 

differences arising only after ~430 ms following stimulus onset, specifically in the motion 616 

coherence task. The current analyses suggest that differences in dyslexia arise due to the 617 

efficiency with which evidence is extracted from global motion stimuli and integrated towards 618 

a decision bound, which is often attributed to parietal areas (Hanks et al., 2006; Shadlen & 619 

Newsome, 1996; 2001; de Lafuente et al., 2015). Without a comparable form task, it is 620 

unclear from the current study whether reduced evidence accumulation is restricted to tasks 621 

that tax the dorsal stream. However, we suggest that within the magnocellular/dorsal stream, 622 

early sensory processing is unaffected in dyslexia with group differences emerging only at 623 

later processing stages, including those involved in decision-making. While this conclusion 624 

contrasts studies indicating early alterations of the magnocellular pathway in dyslexia 625 

(Giraldo-Chica et al., 2015; Livingstone et al., 1991; Perani et al., 2021; Stein, 2001, 2019; 626 

Stein & Walsh, 1997), the global motion tasks used in the current study are not ideally 627 

placed to isolate magnocellular processes (Skottun, 2011; Skottun & Skoyles, 2006, 2008; 628 

Skottun, 2016). Future work will be required to determine how specific reduced evidence 629 

accumulation in dyslexia is to visual motion processing. Slower responses have been 630 

reported in dyslexia for other tasks (Catts et al., 2002, Nicolson & Fawcett, 1994) which 631 

could reflect pervasive reduced evidence accumulation, and reduced global integrative 632 

processes have been reported in static tasks in children with dyslexia (Franceschini et al., 633 
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2017a). However, slowed responses could arise for different reasons (e.g., increased non-634 

decision time, wider boundary separation), so diffusion model decompositions on various 635 

tasks are required.  636 

 A number of future research directions emerge. What cognitive skills other than 637 

magnocellular / dorsal stream processing contribute to reduced drift-rate in dyslexia? 638 

General processing speed is a unique predictor of word reading and comprehension 639 

(Christopher et al., 2012) and RAN is a recognized independent contributor to variation in 640 

reading ability, complementing phonological skills (e.g., O’Brien & Yeatman, 2020). Future 641 

work will need to establish the extent to which reduced processing speed and slower RAN 642 

associate with reduced drift-rate in dyslexia. Additionally, performance IQ varied across our 643 

two groups and was associated with drift-rate. Exploratory models revealed that, even when 644 

controlling for both age and performance IQ, there was still relatively more evidence for 645 

group differences in drift-rate than no group differences. Yet the evidence was weaker than 646 

in models controlling only for age. Importantly, partialling out differences in performance IQ 647 

could remove some of the variance related to the group differences we are interested in, as 648 

atypical development could lead to both dyslexia and reduced IQ (Dennis et al., 2009). 649 

Indeed, performance IQ has been shown to strongly predict reading skills, independently of 650 

phonological skills (O’Brien & Yeatman, 2020). Future work will need to investigate the 651 

contribution of processing speed and performance IQ to decision making across the 652 

spectrum of reading abilities. Future research will also be required to explain the 653 

considerable between-participants variability in model and EEG parameters in children with 654 

and without dyslexia. 655 

 By combining diffusion modelling and EEG measures that are sensitive to the 656 

multiple processes contributing to motion perception, we have uncovered differences 657 

between children with dyslexia and typically developing children that could not be observed 658 

in behavioural responses alone. Moreover, diffusion modelling allows motion sensitivity to be 659 

measured without confounding speed-accuracy tradeoffs. Given that reduced behavioural 660 

sensitivity to motion has been reported in a range of other disorders (Braddick et al., 2003; 661 
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Chen et al., 2003; McKendrick & Badcock, 2004), we suggest that diffusion modelling may 662 

provide a useful framework to identify convergence and divergence across different 663 

conditions, with implications for understanding the development of these conditions and their 664 

relationship to other cognitive processes. 665 

 Future work should establish whether differences in evidence accumulation of motion 666 

information contribute causally to the reading difficulties experienced by children with 667 

dyslexia. Some studies have suggested a causal relationship between motion perception 668 

and reading difficulties (e.g., Boets et al., 2011; Ebrahimi et al., 2019; Gori et al., 2016; 669 

Kevan & Pammer, 2009; Lawton, 2016; Qian & Bi, 2015), so it would be interesting to know 670 

if evidence accumulation processes can be trained to improve reading ability. In support of 671 

this possibility, action video game training has been shown to improve motion perception by 672 

acting on the evidence accumulation phase (Green et al., 2010) and action video game 673 

training has also been linked to improved reading skills in children with dyslexia 674 

(Franceschini et al., 2013; 2017b, Franceschini & Bertoni, 2019; Bertoni et al., 2019; 2021). 675 

Such causal links will need to be investigated in future work using training or intervention 676 

designs. 677 

 678 
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Figure Legends 940 

 941 

Figure 1. Schematic representation of the decision-making process in the diffusion 942 

model for a trial with rightward motion 943 

Decision-making process represented as a noisy accumulation of evidence from a starting 944 

point, z, towards one of two decision bounds. In our motion tasks, the decision bounds 945 

correspond to left and right responses. Boundary separation, a, represents the width 946 

between the two bounds and reflects response caution. Wider decision boundaries reflect 947 

that more evidence is required before making a decision (i.e., more cautious responses). 948 

Drift-rate, v, reflects the rate of evidence accumulation, which depends on both the 949 

individual’s sensitivity to a stimulus and the stimulus strength. Non-decision time, ter, is the 950 

time taken for sensory encoding processes prior to the decision-making process and 951 

response generation processes after a bound is reached. 952 

 953 

Figure 2. Schematic representation of trial procedure. 954 

The trial started with an initial fixation period that was followed by a random motion period 955 

consisting of random, incoherent moving dots, which was in turn followed by a stimulus 956 

containing leftward or rightward global motion. The child was asked to report the direction 957 

using a response box. After the response or after the maximum stimulus duration elapsed 958 

(2500 ms), the stimulus remained on the screen for a short offset period. Note that arrows 959 

(indicating movement) and dotted lines (marking the square stimulus region) are presented 960 

for illustration only. The stimulus shown here is from the motion coherence task, where a 961 

proportion of dots move coherently. In the direction integration task, dot directions were 962 

taken from a Gaussian distribution. Figure reproduced from https://osf.io/wmtpx/ under a CC-963 

BY4.0 license. 964 

 965 

Figure 3. Scalp topographies and temporal dynamics for the most reliable component 966 

in the motion coherence and direction integration tasks 967 
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Topographic visualisations of the forward-model projections of the most reliable component 968 

(left) reflecting the weights given to each electrode following reliable components analysis 969 

(RCA) on data from all participants pooled across difficulty level, for the motion coherence 970 

task (upper) and direction integration task (lower). The waveforms (right) show the temporal 971 

dynamics of the component. 972 

 973 

Figure 4. Group average stimulus-locked and response-locked evoked potentials for 974 

the motion coherence task 975 

Average (±1SEM) stimulus-locked (upper) and response-locked (lower) evoked potentials for 976 

typically developing children (grey) and children with dyslexia (blue) in the motion coherence 977 

task for difficult and easy levels. The left column shows non-deconvolved group average 978 

waveforms. The central column shows deconvolved group average waveforms (without 979 

regularisation). The right column shows deconvolved group average waveforms with 980 

regularisation (ridge regression). The vertical line at 0 ms indicates when the stimulus phase 981 

started (stimulus-locked) or when the response was made (response-locked). 982 

 983 

Figure 5. Group average stimulus-locked and response-locked evoked potentials for 984 

the direction integration task 985 

Average (±1SEM) stimulus-locked (upper) and response-locked (lower) evoked potentials for 986 

typically developing children (grey) and children with dyslexia (blue) in the direction 987 

integration task for difficult and easy levels. The left column shows non-deconvolved group 988 

average waveforms. The central column shows deconvolved group average waveforms 989 

(without regularisation). The right column shows deconvolved group average waveforms with 990 

regularisation (ridge regression). The vertical line at 0 ms indicates when the stimulus phase 991 

started (stimulus-locked) or when the response was made (response-locked). 992 

 993 

 994 
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Figure 6. Accuracy and median response time (RT) for correct trials 995 

Violin plots showing the kernel probability density for each group’s accuracy (left) and 996 

median RT (s) for correct trials (right) for each difficulty level and each task (upper: motion 997 

coherence; lower: direction integration). Data for typically developing children and children 998 

with dyslexia are presented in grey and blue, respectively. Dots and vertical lines represent 999 

the group mean and ±1 SEM. 1000 

 1001 

Figure 7. Model fits 1002 

Defective cumulative density function plots for each of the four models, for typically 1003 

developing children (upper rows) and children with dyslexia (bottom rows) for difficult and 1004 

easy levels. Green represents correct responses and red represents error responses, at 1005 

each of 9 quantiles. The dots reflect the observed data and crosses with connecting lines 1006 

reflect the model fit. The dots and crosses at 2.5 seconds reflect the observed and model 1007 

predicted misses. 1008 

 1009 

Figure 8. Prior and posterior density distributions  1010 

Prior (green) and posterior (purple) density distributions for the group-level parameters 1011 

reflecting group differences in each of the 5 model parameters (v.mean = mean drift-rate 1012 

across difficulty levels; a = boundary separation; ter = non-decision time; v.diff = difference in 1013 

mean drift-rate between difficulty levels; z/a = relative starting point) for each task. The upper 1014 

inset shows a schematic of the model parameters shown. The leftmost columns show the 1015 

results of the standard model and the rightmost columns show the results of the model with 1016 

age partialled out. Negative values reflect lower parameter values in the dyslexia group 1017 

compared to the typically developing group. BF = Savage-Dickey Bayes factors in favour of 1018 

the alternative hypothesis (H1) over the null hypothesis (H0). BF > 1 support H1. 1019 

 1020 

 1021 



38 
 

 38 

Figure 9.Scatterplots plotting individual parameter estimates against performance IQ  1022 

Maximum likelihood estimates contained within the posterior for each participant’s mean 1023 

drift-rate across difficulty levels (v.mean), boundary separation (a), non-decision time (ter), 1024 

difference in drift-rate between difficulty levels (v.diff), and starting point (z/a), plotted as a 1025 

function of performance IQ (PIQ), for the motion coherence task (left column) and direction 1026 

integration task (right column). Typically developing children are plotted in grey and children 1027 

with dyslexia are plotted in blue. 1028 

 1029 

Figure 10. Exploratory analyses: prior and posterior density distributions for model 1030 

with age and performance IQ partialled out 1031 

While our pre-registered analysis did not control for performance IQ, we conducted an 1032 

exploratory analysis to investigate whether group differences in drift-rate were still apparent 1033 

when controlling for performance IQ. The figure shows prior (green) and posterior (purple) 1034 

density distributions for the group-level parameters reflecting group differences in each of 1035 

the 5 model parameters (v.mean = mean drift-rate across difficulty levels; a = boundary 1036 

separation; ter = non-decision time; v.diff = difference in mean drift-rate between difficulty 1037 

levels; z/a = relative starting point) for each task, when both age, performance IQ (PIQ) and 1038 

their interaction are partialled out. Negative values reflect lower parameter values in the 1039 

dyslexia group compared to the typically developing group. BF = Savage-Dickey Bayes 1040 

factors in favour of the alternative hypothesis (H1) over the null hypothesis (H0). BF > 1 1041 

support H1. As in Figure 8, the posterior distribution for v.mean is shifted leftwards, reflecting 1042 

lower mean drift-rate in the dyslexia group than the typically developing group. The 1043 

corresponding Bayes factors are smaller in these analyses, indicating weaker evidence for 1044 

group differences. As we reflect on in the Discussion of the main manuscript, the decision to 1045 

partial out PIQ should not be taken lightly, as PIQ seems to contribute to both decision 1046 

making variables (drift-rate) and group differences, so it is likely that partialling out PIQ 1047 

removes some of the variance related to the group differences we are interested in. 1048 

 1049 
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Figure 11. EEG slope measure extracted for inclusion in the joint model  1050 

Violin plots showing the kernel probability density for the EEG slope measure extracted for 1051 

inclusion in the joint model for each group (typically developing: grey; dyslexia: blue) for 1052 

each difficulty level. The extracted measure was the slope of a linear regression line fitted to 1053 

each participant’s deconvolved (with regularisation) response-locked waveform, from 200 ms 1054 

prior to the response to the response (see shaded area of schematic response-locked 1055 

waveform in inset). The dotted line reflects a flat slope. Dots and vertical lines represent the 1056 

group mean and ±1 SEM. 1057 

 1058 

Figure 12. Scatterplots showing relationship between drift-rate and EEG 1059 

Left panels show maximum likelihood estimates contained within the posterior for each 1060 

participant’s mean drift-rate across difficulty levels (v.mean) plotted against the slope of EEG 1061 

activity averaged across difficulty levels (EEG.mean) for the motion coherence (top) and 1062 

direction integration (bottom) tasks. Right panels show point estimates for each participant’s 1063 

difference in drift-rate between difficulty levels (v.diff) plotted against the difference in slopes 1064 

of EEG activity between the two difficulty levels (EEG.diff), for each task. Typically 1065 

developing children are plotted in grey and children with dyslexia are plotted in blue. 1066 

 1067 

Figure 13. Posterior density plots showing the correlation between drift-rate and the 1068 

EEG measure 1069 

Inset provides a schematic representation of the drift-rate parameter (v; left) and EEG 1070 

measure (slope of response-locked waveform from -200 ms to 0 ms around the response; 1071 

right) that were correlated in the joint model, where ρ represents the correlation. Posterior 1072 

density plots in the left column reflect the correlation between the mean drift-rate across 1073 

difficulty levels (v.mean) and the mean EEG slope measure across difficulty levels 1074 

(EEG.mean). Posterior density plots in the right column reflect the correlation between the 1075 

difference in drift-rate between difficulty levels (v.diff) and the difference in EEG slope 1076 

measure between difficulty levels (EEG.diff). Plots for the motion coherence task are 1077 
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presented in the upper row and plots for the direction integration task are presented in the 1078 

lower row. The orange distribution shows the correlation across all participants, and the grey 1079 

and blue distributions show separate correlations estimated for typical children and children 1080 

with dyslexia, respectively. 1081 
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Table 1. Demographics of participants included in final dataset 

 Typically developing 

(n = 50) 

Dyslexia 

(n = 50) 

Age 10.65 (2.34) 6.55 – 14.98 11.08 (1.87) 7.81 – 14.53 

Performance IQ 109.26 (11.53) 81 – 145  99.40 (15.29) 72 – 141  

Verbal IQ 110.60 (8.42) 95 – 127  98.56 (10.60) 77 – 118  

Full-scale IQ 111.36 (9.02) 89 – 132 98.70 (12.85) 75 – 132 

TOWRE-2 PDE 111.18 (16.53) 81 – 153 79.16 (9.45) 51 – 99 

WIAT-Spelling 105.74 (10.21) 80 – 127  77.86 (7.96) 58 – 99 

Composite score 108.46 (12.15) 89.5 – 138.0 78.51 (7.46) 54.5 – 89.0 

Note. Data are presented as M (SD) Range.  

 


